Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Microfluidic-Based Generation of 3D Collagen Spheres to Investigate Multicellular Spheroid Invasion.

During tumor progression, cancer cells acquire the ability to escape the primary tumor and invade adjacent tissues. They migrate through the stroma to reach blood or lymphatics vessels that will allow them to disseminate throughout the body and form metastasis at distant organs. To assay invasion capacity of cells in vitro, multicellular spheroids of cancer cells, mimicking primary tumor, are commonly embedded in collagen I extracellular matrix, which mimics the stroma. However, due to their higher density, spheroids tend to sink at the bottom of the collagen droplets, resulting in the spreading of the cells on two dimensions. We developed an innovative method based on droplet microfluidics to embed and control the position of multicellular spheroids inside spherical droplets of collagen. In this method cancer cells are exposed to a uniform three-dimensional (3D) collagen environment resulting in 3D cell invasion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app