Add like
Add dislike
Add to saved papers

Lipid accumulation and metabolic analysis based on transcriptome sequencing of filamentous oleaginous microalgae Tribonema minus at different growth phases.

Filamentous oleaginous microalgae specie Tribonema minus is a promising feedstock for biodiesel production. However, the metabolic mechanism of lipid production in this filamentous microalgal specie remains unclear. Here, we compared the lipid accumulation of T. minus at different growth phases, and described the de novo transcriptome sequencing and assembly and identified important pathways and genes involved in TAG production. Total lipid increased by 2.5-fold and its TAG level in total lipid reached 81.1% at stationary phase. Using the genes involved in the lipid metabolism, the TAG biosynthesis pathways were generated. Moreover, results also demonstrated that, in addition to the observed overexpression of the fatty acid synthesis pathway, TAG production at stationary growth phase was bolstered by repression of the β-oxidation pathway, up-regulation of genes that funnels acetyl-CoA to lipid biosynthesis, especially gene encoding for phospholipid:diacylglycerol acyltransferase (PDAT) which funnels DAG to TAG biosynthesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app