Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Monte Carlo sampling for stochastic weight functions.

Conventional Monte Carlo simulations are stochastic in the sense that the acceptance of a trial move is decided by comparing a computed acceptance probability with a random number, uniformly distributed between 0 and 1. Here, we consider the case that the weight determining the acceptance probability itself is fluctuating. This situation is common in many numerical studies. We show that it is possible to construct a rigorous Monte Carlo algorithm that visits points in state space with a probability proportional to their average weight. The same approach may have applications for certain classes of high-throughput experiments and the analysis of noisy datasets.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app