Add like
Add dislike
Add to saved papers

The inhibitory impacts of Lactobacillus rhamnosus GG-derived extracellular vesicles on the growth of hepatic cancer cells.

Microbial Pathogenesis 2017 September
Bacterial extracellular vesicles (EVs) have come forth into notice as possible important agent to mediate host-pathogen interactions. In this scientific research, the authors have tried to find out the effect of EVs derived from Lactobacillus rhamnosus GG (LDEVs) on the apoptosis induction in HepG2 cell line. The EVs were purified from the conditioned medium of Lactobacillus rhamnosus GG using ultrafiltration and confirmed by transmission electron microscopy (TEM). The HepG2 cells were treated with different concentrations of purified LDEVs and the cytotoxicity and their effects on the expression of bcl-2 and bax genes were assessed by the MTT assay and semi-quantitative RT-PCR, respectively. The MTT assay showed that only 100 μg/ml of LDEVs had a significant cytotoxic effect on cancer cells (p < 0.05). The apoptotic index (bax/bcl2 expression ratio) was significantly increased after treating with 50 and 100 μg/ml LDEVs (p < 0.05). Increased bax/bcl-2 ratio was led to cancer cell death.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app