Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Delineating the roles of cellular and innate antiviral immune parameters mediating ranavirus susceptibility using rainbow trout cell lines.

Virus Research 2017 June 16
Frog virus 3 is the type species of the Ranavirus genus and the causative agent of massive mortalities of aquatic species worldwide. A critical step in limiting virus replication, particularly early in infection, is the innate immune response. Presently, little is known regarding what innate immune strategies limit FV3 at the cellular level. To this end, the present study uses two rainbow trout cell lines, RTG-2 and RTgutGC, which demonstrate susceptible and relatively resistant phenotypes to FV3 infection, to elucidate susceptibility factors to FV3. RTG-2 demonstrated a lower LD50 and significantly higher virus transcript production compared to RTgutGC. The mode of cell death appeared to be apoptosis for both cell lines; however, RTG-2 did not demonstrate fragmented nuclei typical of apoptosis in cell culture. Next, the source of RTG-2's enhanced susceptibility was pursued, in hopes of highlighting unique features of this virus-host interaction that would predispose a cell to susceptibility. The type I interferon (IFN) response is the keystone mechanism used by the innate immune system to limit virus replication. FV3 induced very low to no levels of IFNs and interferon stimulated genes (ISGs) in either cell line, nor did inducing IFNs prior to infection inhibit virus-induced cell death. A dsRNA-induced antiviral state did reduce virus replication however. UV-inactivated FV3 was also able to kill RTG-2; thus, susceptibility to FV3-induced cell death observed in RTG-2 was independent of virus replication or the cell's ability, or lack thereof, to produce an IFN response. Importantly, RTG-2 showed greater viral entry compared to RTgutGC, suggesting non-innate immune factors, such as surface receptor expression or endocytic mechanism rates, may be key contributors to FV3 susceptibility. These findings contribute to our understanding of cell-level susceptibility to this environmentally important aquatic animal pathogen.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app