Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Efficacy and cytotoxicity in cell culture of novel α-hydroxytropolone inhibitors of hepatitis B virus ribonuclease H.

Antiviral Research 2017 August
Chronic Hepatitis B virus (HBV) infection is a major worldwide public health problem. Current direct-acting anti-HBV drugs target the HBV DNA polymerase activity, but the equally essential viral ribonuclease H (RNaseH) activity is unexploited as a drug target. Previously, we reported that α-hydroxytropolone compounds can inhibit the HBV RNaseH and block viral replication. Subsequently, we found that our biochemical RNaseH assay underreports efficacy of the α-hydroxytropolones against HBV replication. Therefore, we conducted a structure-activity analysis of 59 troponoids against HBV replication in cell culture. These studies revealed that antiviral efficacy is diminished by larger substitutions on the tropolone ring, identified key components in the substitutions needed for high efficacy, and revealed that cytotoxicity correlates with increased lipophilicity of the α-hydroxytropolones. These data provide key guidance for further optimization of the α-hydroxytropolone scaffold as novel HBV RNaseH inhibitors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app