Add like
Add dislike
Add to saved papers

Dencichine ameliorates kidney injury in induced type II diabetic nephropathy via the TGF-β/Smad signalling pathway.

Diabetic nephropathy (DN), a common complication associated with both type I and type II diabetes mellitus (DM), is a major cause of chronic nephropathy and a common cause of end-stage renal diseases (ESRD) throughout the world. This study is aimed to determine whether dencichine (De) can ameliorate renal damage in high-glucose-and-fat diet combined STZ (streptozocin) induced DN in type II DM rats and to investigate the potential underlying mechanisms. Markers of metabolism, diabetes, and renal function, and levels of extracellular matrix (ECM) collagen I (Col I), collagen IV (Col IV), fibronectin (FN) and laminin (LN), and of proteins in the TGF-β/Smad pathway were analysed through RT-PCR, western blot, immunofluorescence and immunohistochemistry. The results show that De significantly alleviates metabolism disorder, improved renal function, relieved pathological alterations in the glomerulus of DN rats, decreased ECM deposition and increased the ratio of matrix metalloproteinase (MMP)-9 to tissue inhibitor of metalloproteinase (TIMP)-1 both in vivo and in vitro. Moreover, De negatively regulated TGF-β/Smad signalling pathway and increased the expression of Smad7, an endogenic inhibitory Smad located downstream of the signalling pathway. In conclusion, we provide experimental evidence indicating that the renoprotective effect of De could significantly prevent the progression of DN possibly attribute to down-regulation of the TGF-β/Smad pathway and rebalance the deposition and degradation of ECM proteins.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app