Add like
Add dislike
Add to saved papers

Investigating microRNA-mediated regulation of the nascent nuclear transcripts in plants: a bioinformatics workflow.

Most of the microRNAs (miRNAs) play their regulatory roles through posttranscriptional target decay or translational inhibition. For both plants and animals, these regulatory events were previously considered to take place in cytoplasm, as mature miRNAs were observed to be exported to the cytoplasm for Argonaute (AGO) loading and subsequent target binding. Recently, this notion was challenged by increasing pieces of evidence in the animal cells that uncovered the nuclear importation and action of the AGO-associated miRNAs. The nuclear-localized regulatory mode was also reported for the plant miRNAs. However, evidence is still lacking to show the universality and conservation of the miRNA-mediated regulation in the plant nuclei. Here, we introduced a bioinformatics workflow for genome-wide investigation of miRNA-guided, cleavage-based regulation of the nascent nuclear transcripts. Facilitated by the tool package PmiRNTSA (Plant microRNA-mediated nascent transcript slicing analyzer), plant biologists could perform a comprehensive search for the miRNA slicing sites located within the introns or the exon-intron/intron-exon junctions of the target transcripts, which are supported by degradome sequencing data. The results enable the researchers to examine the co-transcriptional regulatory model of the miRNAs for a specific plant species. Moreover, a case study was performed to search for the slicing sites located within the exon-intron/intron-exon junctions in two model plants. A case study was performed to show the feasibility and reliability of our workflow. Together, we hope that this work could inspire much more innovative research efforts to expand the current understanding of the miRNA action modes in plants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app