JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Magnesium-deficiency-induced alterations of gas exchange, major metabolites and key enzymes differ among roots, and lower and upper leaves of Citrus sinensis seedlings.

Tree Physiology 2017 November 2
Magnesium (Mg)-deficiency is a widespread problem adversely affecting the quality and yield of crops, including citrus. 'Xuegan' [Citrus sinensis (L.) Osbeck] seedlings were irrigated every other day with nutrient solution at an Mg concentration of 0 mM (Mg-deficiency) or 1 mM (Mg-sufficiency) for 16 weeks. Thereafter, biomass, leaf mass per area, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), pigments in the upper and lower leaves, Mg, gas exchange, organic acids, nonstructural carbohydrates, total soluble proteins, amino acids, phenolics and anthocyanins, and key enzymes related to organic acid, amino acid and phenolic metabolisms in the roots, and upper and lower leaves were assayed in order to test the hypothesis that Mg-deficiency-induced alterations of gas exchange, major metabolites and key enzymes may differ among the roots, and upper and lower leaves. Magnesium-deficiency affected the most measured parameters more in the lower than in the upper leaves except for the nonstructural carbohydrates, but the variation trends were similar between the two. Despite increased accumulation of nonstructural carbohydrates, the lower CO2 assimilation in the Mg-deficient leaves was not caused by the feedback inhibition mechanism via sugar accumulation. Both dark respiration and organic acid metabolism were elevated in the Mg-deficient lower leaves to 'consume' the excess carbohydrates, and inhibited in the Mg-deficient roots with less accumulation of nonstructural carbohydrates to keep the balance of net carbon. More total phenolics and fewer anthocyanins were accumulated in the Mg-deficient lower leaves, whereas the accumulation of both total phenolics and anthocyanins was reduced in the Mg-deficient roots. Interestingly, amino acid biosynthesis was repressed in the Mg-deficient roots and lower leaves, thus lowering the level of total free amino acids in these roots and leaves. To conclude, great differences existed in the Mg-deficiency-induced alterations of gas exchange, major metabolites and key enzymes among the roots, and upper and lower leaves.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app