Add like
Add dislike
Add to saved papers

Urinary Volatile Organic Compounds as Potential Biomarkers in Idiopathic Membranous Nephropathy.

OBJECTIVE: To detect urinary volatile organic compounds (VOCs) in patients with idiopathic membranous nephropathy (iMN) and normal controls, and to examine whether or not urinary VOCs can act as biomarkers for the diagnosis of iMN independent of renal biopsy.

MATERIALS AND METHODS: Gas chromatography/mass spectrometry (GC/MS) was used to assess the urine collected from 63 iMN patients and 15 normal controls. The statistical methods of principal component analysis and partial least squares discriminant analysis were performed to process the final data in Common Data Format which were converted from GC/MS data.

RESULTS: Six VOCs in the urine samples of iMN patients exhibited significant differences from those of normal controls: carbamic acid monoammonium salt, 2-pentanone, 2,4-dimethyl-pentanal, hydrogen azide, thiourea, and 4-heptanone were significantly higher than in controls (p < 0.05).

CONCLUSIONS: Six urinary VOCs were isolated from patients with iMN using GC/MS. The analysis of urinary VOCs using GC/MS could be developed into a non-invasive method for the detection of iMN.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app