Add like
Add dislike
Add to saved papers

Structural characterization of the immunostimulatory exopolysaccharide produced by Leuconostoc mesenteroides strain NTM048.

Carbohydrate Research 2017 August 8
The exopolysaccharide (EPS) produced by probiotic Leuconostoc mesenteroides subsp. mesenteroides strain NTM048 has been reported to be an immunostimulant that enhances mucosal IgA production. In this study, we found that intranasal administration of mice with the EPS and an antigen (ovalbumin) resulted in secretion of antigen-specific IgA and IgG in the airway mucosa and the serum, suggesting that the EPS has the adjuvant activity for use with mucosal vaccination. Methylation analysis coupled to GC-MS, and 1D and 2D NMR spectroscopy revealed that 94% of the EPS consists of an α-(1 → 6) glucan containing 4% of 1→3-linked α-glucose branches. To determine structures of minor components, we enzymatically digested the glucan with dextranase and used 2D NMR spectroscopy to identify the remaining polymer as a fructan (or fructans), containing both β-(2 → 6)- and β-(2 → 1)-linked fructofuranose residues. These residues may either enter into separate polymers of each linkage type or form a mixed fructan containing both linkage types.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app