Add like
Add dislike
Add to saved papers

Impact of Interface Mixing on the Performance of Solution Processed Organic Light Emitting Diodes-Impedance and Ultraviolet Photoelectron Spectroscopy Study.

We investigated interfacial mixing of solution-processed organic light-emitting devices (OLEDs) using impedance spectroscopy (IS) and ultraviolet photoelectron spectroscopy (UPS) and its impact on device performance. We focused on interfacial mixing between a solution-processed cross-linkable hole transport layer (XM) and an emitting layer (EML), formed either by solution processing or vacuum evaporation. The results of IS and UPS clearly indicated that extensive interfacial mixing was unavoidable, even after the XM was cross-linked to make it insoluble and rinsed to remove residual soluble species, if the subsequent EML was solution processed. In addition, we also demonstrated that interfacial mixing indeed increased hole current density in corresponding hole only device (HOD). In fact, the hole injection efficiency could be an order of magnitude better when the EML was solution processed rather than vacuum evaporated. We investigated such behavior to find the desirable process condition of solution-processed OLEDs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app