Add like
Add dislike
Add to saved papers

Healable, Reconfigurable, Reprocessable Thermoset Shape Memory Polymer with Highly Tunable Topological Rearrangement Kinetics.

The unique capability of topological rearrangement for dynamic covalent polymer networks has enabled various unusual properties (self-healing, solid-state plasticity, and reprocessability) that are not found in conventional thermosets. Achieving these properties in one network in a synergetic fashion can open up new opportunities for shape memory polymer. To accomplish such a goal, the freedom to tune topological rearrangement kinetics is critical. This is, however, challenging to achieve. In this work, two sets of dynamic bonds (urethane and hindered urea) are incorporated into a hybrid network for synthesizing shape memory poly(urea-urethane). By changing the bond ratio, networks with highly tunable topological rearrangement kinetics are obtained. Combining self-healing, solid-state plasticity, and reprocessability in one such shape memory network leads to unusual versatility in its shape-shifting performance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app