Add like
Add dislike
Add to saved papers

Aging Induced Changes in Biochar's Functionality and Adsorption Behavior for Phosphate and Ammonium.

Biochar, a form of pyrogenic carbon, can contribute to agricultural and environmental sustainability by increasing soil reactivity. In soils, biochar could change its role over time through alterations in its surface chemistry. However, a mechanistic understanding of the aging process and its role in ionic nutrient adsorption and supply remain unclear. Here, we aged a wood biochar (550 °C) by chemical oxidation with 5-15% H2 O2 and investigated the changes in surface chemistry and the adsorption behavior of ammonium and phosphate. Oxidation changed the functionality of biochar with the introduction of carboxylic and phenolic groups, a reduction of oxonium groups and the transformation of pyridine to pyridone. After oxidation, the adsorption of ammonium increased while phosphate adsorption decreased. Ammonium adsorption capacity was nonlinearly related to the biochar's surface charge density (r2 = 0.94) while electrostatic repulsion and loss of positive charge due to destruction of oxonium and pyridine, possibly caused the reduced phosphate adsorption. However, the oxidized biochar substantially adsorbed both ammonium and phosphate when biochar derived organic matter (BDOM) was included. Our results suggest that aging of biochar could reverse its capacity for the adsorption of cationic and anionic species but the inclusion of BDOM could increase ionic nutrient and contaminant retention.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app