JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Postictal hypoperfusion/hypoxia provides the foundation for a unified theory of seizure-induced brain abnormalities and behavioral dysfunction.

Epilepsia 2017 September
A recent article by Farrell et al. characterizes the phenomenon, mechanisms, and treatment of a local and severe hypoperfusion/hypoxia event that occurs in brain regions following a focal seizure. Given the well-established role of cerebral ischemia/hypoxia in brain damage and behavioral dysfunction in other clinical settings (e.g., stroke, cerebral vasospasm), we put forward a new theory: postictal hypoperfusion/hypoxia is responsible for the negative consequences associated with seizures. Fortunately, inhibition of two separate molecular targets, cyclooxygenase-2 (COX-2) and l-type calcium channels, can prevent the expression of postictal hypoperfusion/hypoxia. These inhibitors are important experimental tools used to separate the seizure from the resulting hypoperfusion/hypoxia and can allow researchers to address the contribution of this phenomenon to negative outcomes associated with seizures. Herein we address the implications of this postictal stroke-like event in acute behavioral dysfunction (e.g., Todd's paresis) and sudden unexpected death in epilepsy (SUDEP). Moreover, anatomic alterations such as increased blood-brain barrier permeability, glial activation, central inflammation, and neuronal loss could also be a consequence of repeated hypoperfusion/hypoxic events and, in turn, underlie chronic interictal cognitive and behavioral comorbidities (e.g., memory deficits, anxiety, depression, and psychosis) and exacerbate epileptogenesis. Thus these seemingly disparate and clinically important observations may share a common point of origin: postictal hypoperfusion/hypoxia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app