Add like
Add dislike
Add to saved papers

Sequentially Responsive Shell-Stacked Nanoparticles for Deep Penetration into Solid Tumors.

Advanced Materials 2017 August
Nanomedicine to overcome both systemic and tumor tissue barriers ideally should have a transformable size and surface, maintaining a certain size and negative surface charge for prolonged circulation, while reducing to a smaller size and switching to a positive surface charge for efficient penetration to and retention in the interstitial space throughout the tumor tissue. However, the design of such size and charge dual-transformable nanomedicine is rarely reported. Here, the design of a shell-stacked nanoparticle (SNP) is reported, which can undergo remarkable size reduction from about 145 to 40 nm, and surface charge reversal from -7.4 to 8.2 mV at acidic tumor tissue, for enhanced tumor penetration and uptake by cells in deep tumor tissue. The disulfide-cross-linked core maintains the stability of the particle and prevents undesired premature drug release until the shedding of the shell, which accelerates the cleavage of more exposed disulfide bond sand intracellular drug release. SNP penetrates about 1 mm into xenografted A549 lung carcinoma, which is about four times penetration depth of the nontransformable one. The doxorubicin (DOX)-loaded SNP (SNP/DOX) shows significant antitumor efficacy and nearly eradicates the tumor, substantiating the importance of the design of size and charge dual-transformable nanomedicine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app