JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Free Energy of Nanoparticle Binding to Multivalent Polymeric Substrates.

Characterization of the interactions between nanosize ligands and polymeric substrates is important for predictive design of nanomaterials and in biophysical applications. The multivalent nature of the polymer-nanoparticle interaction and the dynamics of multiple internal conformations of the polymer chains makes it difficult to infer microscopic interactions from macroscopic binding assays. Using coarse-grained simulations, we estimate the free energy of binding between a nanoparticle and a surface-grafted polymeric substrate as a function of pertinent parameters such as polymer chain length, nanoparticle size, and microscopic polymer-nanoparticle attraction. We also investigate how the presence of the nanoparticle affects the internal configurations of the polymeric substrate, and estimate the entropic cost of binding. The results have important implications for the understanding of complex macromolecular assemblies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app