Add like
Add dislike
Add to saved papers

Stabilization of a Virus-Like Particle and Its Application as a Nanoreactor at Physiological Conditions.

Biomacromolecules 2017 November 14
Virus-like particles are very interesting tools for application in bionanotechnology, due to their monodisperse features and biocompatibility. In particular, the cowpea chlorotic mottle virus (CCMV) capsid has been studied extensively as it can be assembled and disassembled reversibly, facilitating cargo encapsulation. CCMV is, however, only stable at physiological conditions when its endogenous nucleic acid cargo is present. To gain more flexibility in the type of cargo encapsulated and to broaden the window of operation, it is interesting to improve the stability of the empty virus-like particles. Here, a method is described to utilize the CCMV capsid at close to physiological conditions as a stable, enzyme-filled nanoreactor. As a proof-of-principle, the encapsulation of T4 lysozyme (T4L) was chosen; this enzyme is a promising antibiotic, but its clinical application is hampered by, for example, its cationic character. It was shown that four T4L molecules can successfully be encapsulated inside CCMV capsids, while remaining catalytically active, which could thus improve the enzyme's application potential.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app