Add like
Add dislike
Add to saved papers

The Interaction Mode of Groove Binding Between Quercetin and Calf Thymus DNA Based on Spectrometry and Simulation.

Quercetin, a ubiquitous flavanoid, has numerous pharmacological effects, such as antioxidant and antitumor. Previous studies showed nucleic acids were the potential biological targets for antitumor medicine. For exploring the mechanism of DNA-target medicine, the interaction between quercetin and calf thymus DNA was studied based on the method of spectrometry and simulation in our study. Firstly, the interaction between quercetin and calf thymus DNA was confirmed by fluorescence spectrometry. Furthermore, circular dichroism, fluorescence polarization, competitive displacement assay, and salt concentration dependence assay were applied to search the interaction mode of quercetin-calf thymus DNA, which proved the existence of groove binding and electrostatic interaction. Meanwhile, quenching constant Ksv , binding constant Ka and the number of binding sites n was calculated, inferring that the fluorescence quenching occurred by static quenching process, and the main acting force was hydrogen bond. Finally, molecular docking was used to simulate and analyze the interaction between quercetin and calf thymus DNA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app