Add like
Add dislike
Add to saved papers

Tuning the Surface Polarity of Microporous Organic Polymers for CO 2 Capture.

CO2 capture is very important to reduce the CO2 concentration in atmosphere. Herein, we report the preparation of microporous polymers with tunable surface polarity for CO2 capture. Porous polymers functionalized with -NH2 , -SO3 H, and -SO3 Li have been successfully prepared by using a post-synthesis modification of microporous polymers (P-PhPh3 prepared with 1,3,5-triphenylbenzene as the monomer and AlCl3 as the catalyst) by chemical transformations, such as nitration-reduction, sulfonation, and cationic exchange. The CO2 adsorption selectivity (CO2 /N2 and CO2 /H2 ) and isosteric heats of the microporous polymers increase markedly after modification, P-PhPh3 -NH2 and P-PhPh3 -SO3 Li afford higher CO2 uptake capacity than P-PhPh3 at pressures of less than 0.15 bar due to the enhanced interaction between CO2 and the -NH2 and -SO3 Li functional groups. Moreover, functionalized porous polymers could be stably used for CO2 capture. Surface modification is an efficient approach to tune the CO2 capture properties of porous polymers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app