JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Sonic hedgehog, Wnt, and brain-derived neurotrophic factor cell signaling pathway crosstalk: potential therapy for depression.

There are various theories to explain the pathophysiology of depression and support its diagnosis and treatment. The roles of monoamines, brain-derived neurotrophic factor (BDNF), and Wnt signaling are well researched, but sonic hedgehog (Shh) signaling and its downstream transcription factor Gli1 are not well studied in depression. Shh signaling plays a fundamental role in embryonic development and adult hippocampal neurogenesis and also involved in the growth of cancer. In this article, we summarize the evidence for the Shh signaling pathway in depression and the potential crosstalk of Shh with Wnt and BDNF. Antidepressants are known to upregulate the adult hippocampal neurogenesis to treat depression. Shh plays an important role in adult hippocampal neurogenesis, and its downstream signaling components regulate the synthesis of Wnt proteins. Moreover, the expression of Gli1 and Smo is downregulated in depression. BDNF and Wnt signaling are also regulated by various available antidepressants, so there is the possibility that Shh may be involved in the pathophysiology of depression. Therefore, the crosstalk between the Shh, Wnt, and BDNF signaling pathways is being discussed to identify the potential targets. Specifically, the potential role of the Shh signaling pathway in depression is explored as a new target for better therapies for depression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app