Add like
Add dislike
Add to saved papers

Repairing a bone defect with a three-dimensional cellular construct composed of a multi-layered cell sheet on electrospun mesh.

Biofabrication 2017 June 21
In addition to providing maneuverability, electrospun nanofibrous meshes can make excellent supports for constructing flexible cell sheets to regulate cell behavior by nanofiber features. With the target of bone regeneration, herein composite nanofibers with two different fiber arrangements (nestlike, random) were electrospun from a blend solution containing poly(l-lactide) (PLLA) and gelatin (1:1 in weight ratio). Unlike the non-woven morphology in a random nanofibrous mesh, PLLA/gelatin composite nanofibers in the nestlike nanofibrous mesh displayed both non-woven and parallel morphologies. Both kinds of nanofibrous mesh were ∼50 μm thick as-prepared, and shrank to ∼30 μm after seeding with bone mesenchymal stromal cells (BMSCs). After 7 days of in vitro culture, cell sheets could form on both meshes (CSM) and on the culture plate. It was found that application of nanofibrous mesh promoted the osteogenic differentiation of BMSC sheets compared with the control. The nestlike mesh displayed slight superiority over the random mesh in enhancing osteogenic differentiation, but their different fiber arrangements did not cause much difference in cell proliferation. Three-dimensional multi-layered CSM constructs were built by stacking four mono-layered CSMs together. The CSM constructs (based on a nestlike or random nanofibrous mesh) were incubated in vitro for 3 days before being implanted into rat cranial defects. In comparison with the control group, there was significant formation of new calcified bone in both CSM construct-filled groups at 12 weeks' post-operation. The nestlike group showed slightly better bone healing (based on both qualitative and quantitative analysis) than the random group, while showing insignificant differences. We showed that the concept of using a three-dimensional multi-layered CSM construct in enhancing bone regeneration was feasible. Future studies should take more nanofiber features (e.g. bioactive components) into account to further enhance osteogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app