Add like
Add dislike
Add to saved papers

On the die compaction of powders used in pharmaceutics.

Die compaction is widely used in the compaction of pharmaceutical powders (tableting). It is well known that the powder densification is a result of particle rearrangement and particle deformation. The former is considered to be the governing mechanism of densification in an initial stage of compaction and the latter is regarded as the governing mechanism in the compaction at the higher pressure range. As a more realistic assumption, one can consider that a simultaneous performance of both the rearrangement and deformation mechanisms takes place from the beginning of compaction. To mathematically formulate this assumption, a piston equation is presented where the material relative density is given as a function of the applied pressure on the powder. From the equation, it is possible to obtain the contribution of each mechanism to the material densification at each value of the applied pressure. In the continuation, the piston equation is applied to the tabletting of some pharmaceutical powders. These are the powders of Ascorbic Acid, Avicel® PH 101, Avicel® PH 301, Emcompress® , Sodium Chloride, and Tablettose® whose tableting results have been previously published in the literature. The results show the piston equation as a suitable approach to describe the tabletting of pharmaceutical powders.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app