Add like
Add dislike
Add to saved papers

An Intrinsically Stretchable and Compressible Supercapacitor Containing a Polyacrylamide Hydrogel Electrolyte.

Angewandte Chemie 2017 July 25
Stretchability and compressibility of supercapacitors is an essential element of modern electronics, such as flexible, wearable devices. Widely used polyvinyl alcohol-based electrolytes are neither very stretchable nor compressible, which fundamentally limits the realization of supercapacitors with high stretchability and compressibility. A new electrolyte that is intrinsically super-stretchable and compressible is presented. Vinyl hybrid silica nanoparticle cross-linkers were introduced into polyacrylamide hydrogel backbones to promote dynamic cross-linking of the polymer networks. These cross-linkers serve as stress buffers to dissipate energy when strain is applied, providing a solution to the intrinsically low stretchability and compressibility shortcomings of conventional supercapacitors. The newly developed supercapacitor and electrolyte can be stretched up to an unprecedented 1000 % strain with enhanced performance, and compressed to 50 % strain with good retention of the initial performance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app