JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Functional TASK-3-Like Channels in Mitochondria of Aldosterone-Producing Zona Glomerulosa Cells.

Hypertension 2017 August
Ca2+ drives aldosterone synthesis in the cytosolic and mitochondrial compartments of the adrenal zona glomerulosa cell. Membrane potential across each of these compartments regulates the amplitude of the Ca2+ signal; yet, only plasma membrane ion channels and their role in regulating cell membrane potential have garnered investigative attention as pathological causes of human hyperaldosteronism. Previously, we reported that genetic deletion of TASK-3 channels (tandem pore domain acid-sensitive K+ channels) from mice produces aldosterone excess in the absence of a change in the cell membrane potential of zona glomerulosa cells. Here, we report using yeast 2-hybrid, immunoprecipitation, and electron microscopic analyses that TASK-3 channels are resident in mitochondria, where they regulate mitochondrial morphology, mitochondrial membrane potential, and aldosterone production. This study provides proof of principle that mitochondrial K+ channels, by modulating inner mitochondrial membrane morphology and mitochondrial membrane potential, have the ability to play a pathological role in aldosterone dysregulation in steroidogenic cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app