Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Proteomic analysis of mesenchymal to Schwann cell transdifferentiation.

Journal of Proteomics 2017 August 9
While transplantation of Schwann cells facilitates axon regeneration, remyelination and repair after peripheral nerve injury clinical use is limited by cell bioavailability. We posit that such limitation in cell access can be overcome by the use of autologous bone-marrow derived mesenchymal stem cells (MSCs). As MSCs can transdifferentiate to Schwann cell-phenotypes and accelerate nerve regeneration we undertook proteomic evaluation of the cells to uncover the protein contents that affects Schwann cell formulation. Transdifferentiated MSCs secrete significant amounts of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in cell-conditioned media that facilitated neurite outgrowth. MSC proteins significantly regulated during Schwann cell transdifferentiation included, but were not limited to, GNAI2, MYL9, ACTN4, ACTN1, ACTB, CAV-1, HSPB1, PHB2, TBB4B, CTGF, TGFI1, ARF6, EZR, GELS, VIM, WNT5A, RTN4, EFNB1. These support axonal guidance, myelination, neural development and neural growth and differentiation. The results unravel the molecular events that underlie cell transdifferentiation that ultimately serve to facilitate nerve regeneration and repair in support of cell transplantation.

SIGNIFICANCE STATEMENT: While Schwann cells facilitate axon regeneration, remyelination and repair after peripheral nerve injury clinical use is limited by cell bioavailability. We posit that such limitation in cell access can be overcome by the use of bone-marrow derived mesenchymal stem cells (MSCs) transdifferentiated to Schwann cell-phenotypes. In the present study, we undertook the first proteomic evaluation of these transdifferentiated cells to uncover the protein contents that affects Schwann cell formulation. Furthermore, these transdifferentiated MSCs secrete significant amounts of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in cell-conditioned media that facilitated neurite outgrowth. Our results demonstrate that a number of MSC proteins were significantly regulated following transdifferentiation of the MSCs supporting roles in axonal guidance, myelination, neural development and differentiation. The conclusions of the present work unravel the molecular events that underlie cell transdifferentiation that ultimately serve to facilitate nerve regeneration and repair in support of cell transplantation. Our study was the first proteomic comparison demonstrating the transdifferentiation of MSCs and these reported results can affect a wide field of stem cell biology, tissue engineering, and proteomics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app