Add like
Add dislike
Add to saved papers

A Model for Assessing the Clinical and Economic Benefits of Bone-forming Agents for Reducing Fractures in Postmenopausal Women at High, Near-term Risk of Osteoporotic Fracture.

PURPOSE: The goal of this study was to assess and compare the potential clinical and economic value of emerging bone-forming agents using the only currently available agent, teriparatide, as a reference case in patients at high, near-term (imminent, 1- to 2-year) risk of osteoporotic fractures, extending to a lifetime horizon with sequenced antiresorptive agents for maintenance treatment.

METHODS: Analyses were performed by using a Markov cohort model accounting for time-specific fracture protection effects of bone-forming agents followed by antiresorptive treatment with denosumab. The alternative bone-forming agent profiles were defined by using assumptions regarding the onset and total magnitude of protection against fractures with teriparatide. The model cohort comprised 70-year-old female patients with T scores below -2.5 and a previous vertebral fracture. Outcomes included clinical fractures, direct costs, and quality-adjusted life years. The simulated treatment strategies were compared by calculating their incremental "value" (net monetary benefit).

FINDINGS: Improvements in the onset and magnitude of fracture protection (vs the teriparatide reference case) produced a net monetary benefit of $17,000,000 per 10,000 treated patients during the (1.5-year) bone-forming agent treatment period and $80,000,000 over a lifetime horizon that included 3.5 years of maintenance treatment with denosumab.

IMPLICATIONS: Incorporating time-specific fracture effects in the Markov cohort model allowed for estimation of a range of cost savings, quality-adjusted life years gained, and clinical fractures avoided at different levels of fracture protection onset and magnitude. Results provide a first estimate of the potential "value" new bone-forming agents (romosozumab and abaloparatide) may confer relative to teriparatide.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app