Add like
Add dislike
Add to saved papers

Infrared Studies of the Symmetry Changes of the 28 SiH 4 Molecule in Low-Temperature Matrixes. Fundamental, Combination, and Overtone Transitions.

Infrared spectra of28 SiH4 in argon and nitrogen matrixes at low temperature 6.5-20 K in the region of overtone and combination transitions were recorded for the first time. Additionally, the high-resolution spectra were obtained in the fundamental region. The frequencies and the relative intensities of all bands were determined. The set of experimental data suggests that the symmetry of molecules studied in the matrixes is different from the symmetry of the free molecules because of an interaction with the environment. The symmetry of28 SiH4 changes from Td to C3v on transition from the gas phase to a nitrogen matrix and to D2d on transition to an argon matrix. A modeling of SiH4 molecule force fields explains the experimental data as a change of a force constant of the selected SiH bond in the case of SiH4 in the nitrogen matrix or force constants of two opposite angles in the case of SiH4 in the argon matrix. In spite of small values of these changes, they result in noticeable spectroscopic effects: the band splitting and appearance of new bands in matrix spectra compared with spectra of free SiH4 . The interpretation of transitions in the fundamental and combination regions was performed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app