Add like
Add dislike
Add to saved papers

Enhancing the biocompatibility of the polyurethane methacrylate and off-stoichiometry thiol-ene polymers by argon and nitrogen plasma treatment.

Our studies focused on improving the biocompatibility properties of two microfluidic prototyping substrates i.e. polyurethane methacrylate (PUMA) and off-stoichiometry thiol-ene (OSTE-80) polymer by Ar and N2 plasma treatment. The contact angle (CA) measurement showed that both plasma treatments inserted oxygen and nitrogen moieties increased the surface energy and hydrophilicity of PUMA and OSTE-80 polymer which corresponded to an increase of nitrogen to carbon ratios (N/C), as measured by XPS, to provide a conducive environment for cell attachments and proliferation. Under the SEM observation, the surface topography of PUMA and OSTE-80 polymer showed minimal changes after the plasma treatments. Furthermore, ageing studies showed that plasma-treated PUMA and OSTE-80 polymer had stable hydrophilicity and nitrogen composition during storage in ambient air for 15days. After in vitro cell culture of human umbilical vein endothelial cells (HUVECs) on these surfaces for 24h and 72h, both trypan blue and alamar blue assays indicated that PUMA and OSTE-80 polymer treated with N2 plasma had the highest viability and proliferation. The polar nitrogen moieties, specifically amide groups, encouraged the HUVECs adhesion on the plasma-treated PUMA and OSTE-80 surfaces. Interestingly, PUMA polymer treated with Ar and N2 plasma showed different HUVECs morphology which was spindle and cobblestone-shaped respectively after 72h of incubation. On the contrary, a monolayer of well-spread HUVECs formed on the Ar and N2 plasma-treated OSTE-80 polymers. These variable morphologies observed can be ascribed to the adherence HUVECs on the different elastic moduli of these surfaces whereby further investigation might be needed. Overall, Ar and N2 plasma treatment had successfully altered the surface properties of PUMA and OSTE-80 polymer by increasing its surface energy, hydrophilicity and chemical functionalities to create a biocompatible surface for HUVECs adhesion and proliferation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app