Add like
Add dislike
Add to saved papers

Upconverting and persistent luminescent nanocarriers for accurately imaging-guided photothermal therapy.

The fluorescence-guided photothermal therapy (FPTT) has great potential in cancer treatment. However, the conventional FPTT has to be stimulated by external light, which tends to increase background noise and leads to the inaccurate infrared light irradiation for PTT. In this study, upconverting and persistent luminescent nanocarriers (UPLNs) loaded mesoporous silica nanoparticles (UPLNs@mSiO2 ) were first designed to solve the problem mentioned above. The UPLNs cores can effectively reduce the short-lived autofluorescence interference by exerting the delay time between signal acquisition and pulsed excitation light. For testing the luminescence properties, the indotcyanine green (ICG) as photothermal agent was encapsulated into the UPLNs@mSiO2 . The experimental results showed that the UPLNs@mSiO2 nanoparticles could significantly reduce the short-lived autofluorescence interference and improve signal-to-noise ratio during FPTT. Our data suggest that UPLNs@mSiO2 may be a promising tool for improving the accuracy of PTT in vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app