Add like
Add dislike
Add to saved papers

Quantitative image analysis of the shape and size of circular wound sites generated by vertically stamped scratches.

Micron 2017 October
A protocol for quantitative image analysis of wound generation is important to better understand the integrative process of wound healing and the closure mechanism. Here, we present a method for quantitative analysis of microscopic images of circular wound sites generated by vertically stamped scratches. To demonstrate proof-of-concept validation, we used two types of mechanical stamping tools, a mechanical pencil lead (type 1; brittle) and polydimethylsiloxane (PDMS) pillars (type 2; ductile), to create circular wound sites. We also present a method for analysis of microscopic images of the generated wound sites by suggesting new parameters, such as controlled area transfer ratio, modified shape factor, and roundness index, specifically to investigate the shape and size of wounds via house-coded image processing. We believe that this approach can be potentially useful by providing a better way of studying vertical wound generation for future skin wound generation and care applications compared with its counterpart, conventional horizontal wound generation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app