Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Impact of the Niemann-Pick c1 Gene Mutation on the Total Cellular Glycomics of CHO Cells.

Niemann-Pick disease type C (NPC) is an autosomal recessive lipid storage disorder, and the majority of cases are caused by mutations in the NPC1 gene. In this study, we clarified how a single gene mutation in the NPC1 gene impacts the cellular glycome by analyzing the total glycomic expression profile of Chinese hamster ovary cell mutants defective in the Npc1 gene (Npc1 KO CHO cells). A number of glycomic alterations were identified, including increased expression of lactosylceramide, GM1, GM2, GD1, various neolacto-series glycosphingolipids, and sialyl-T (O-glycan), which was found to be the major sialylated protein-bound glycan, as well as various N-glycans, which were commonly both fucosylated and sialylated. We also observed significant increases in the total amounts of free oligosaccharides (fOSs), especially in the unique complex- and hybrid-type fOSs. Treatment of Npc1 KO CHO cells with 2-hydroxypropyl-β-cyclodextrin (HPBCD), which can reduce cholesterol and glycosphingolipid (GSL) storage, did not affect the glycomic alterations observed in the GSL-, N-, and O-glycans of Npc1 KO CHO cells. However, HPBCD treatment corrected the glycomic alterations observed in fOSs to levels observed in wild-type cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app