Add like
Add dislike
Add to saved papers

Benchmarking the Fundamental Electronic Properties of small TiO 2 Nanoclusters by GW and Coupled Cluster Theory Calculations.

We study the vertical and adiabatic ionization potentials and electron affinities of bare and hydroxylated TiO2 nanoclusters, as well as their fundamental gap and exciton binding energy values, to understand how the clusters' electronic properties change as a function of size and hydroxylation. In addition, we have employed a range of many-body methods; including G0 W0 , qsGW, EA/IP-EOM-CCSD, and DFT (B3LYP, PBE), to compare the performance and predictions of the different classes of methods. We demonstrate that, for bare clusters, all many-body methods predict the same trend with cluster size. The highest occupied and lowest unoccupied DFT orbitals follow the same trends as the electron affinity and ionization potentials predicted by the many-body methods, but are generally far too shallow and deep respectively in absolute terms. In contrast, the ΔDFT method is found to yield values in the correct energy window. However, its predictions depend upon the functional used and do not necessarily follow trends based on the many-body methods. Adiabatic potentials are predicted to be similar to their vertical counterparts and holes found to be trapped more strongly than excess electrons. The effect of hydroxylation on the clusters is to open up both the optical and fundamental gap. Finally, a simple microscopic explanation for the observed trends with cluster size and upon hydroxylation is proposed in terms of the onsite electrostatic potential.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app