Add like
Add dislike
Add to saved papers

Nucleation and growth of a bacterial functional amyloid at single-fiber resolution.

Curli are functional amyloids produced by proteobacteria like Escherichia coli as part of the extracellular matrix that holds cells together into biofilms. The molecular events that occur during curli nucleation and fiber extension remain largely unknown. Combining observations from curli amyloidogenesis in bulk solutions with real-time in situ nanoscopic imaging at the single-fiber level, we show that curli display polar growth, and we detect two kinetic regimes of fiber elongation. Single fibers exhibit stop-and-go dynamics characterized by bursts of steady-state growth alternated with periods of stagnation. At high subunit concentrations, fibers show constant, unperturbed burst growth. Curli follow a one-step nucleation process in which monomers contemporaneously fold and oligomerize into minimal fiber units that have growth characteristics identical to those of the mature fibrils. Kinetic data and interaction studies of curli fibrillation in the presence of the natural inhibitor CsgC show that the inhibitor binds curli fibers and predominantly acts at the level of fiber elongation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app