JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Energy-based Neural Networks as a Tool for Harmony-based Virtual Screening.

Molecular Informatics 2017 November
In Energy-Based Neural Networks (EBNNs), relationships between variables are captured by means of a scalar function conventionally called "energy". In this article, we introduce a procedure of "harmony search", which looks for compounds providing the lowest energies for the EBNNs trained on active compounds. It can be considered as a special kind of similarity search that takes into account regularities in the structures of active compounds. In this paper, we show that harmony search can be used for performing virtual screening. The performance of the harmony search based on two types of EBNNs, the Hopfield Networks (HNs) and the Restricted Boltzmann Machines (RBMs), was compared with the performance of the similarity search based on Tanimoto coefficient with "data fusion". The AUC measure for ROC curves and 1 %-enrichment rates for 20 targets were used in the benchmarking. Five different scores were computed: the energy for HNs, the free energy and the reconstruction error for RBMs, the mean and the maximum values of Tanimoto coefficients. The performance of the harmony search was shown to be comparable or even superior (significantly for several targets) to the performance of the similarity search. Important advantages of using the harmony search for virtual screening are very high computational efficiency of prediction, the ability to reveal and take into account regularities in active structures, flexibility and interpretability of models, etc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app