Add like
Add dislike
Add to saved papers

Improving the Quantum Yields of Perylene Diimide Aggregates by Increasing Molecular Hydrophobicity in Polar Media.

Here we report the quantum yield of four aggregated perylene diimide (PDI) species that vary by the length of the branched side chains attached at the N,N' imide positions. The PDI molecules were dissolved in binary water:methanol solvents as a means to vary the solvent polarity and control the degree of aggregation in solution. By performing spectroscopy, kinetics, and light scattering experiments, the nature of the molecular interactions in the solutions was determined. The maximum quantum yield of the aggregated molecules increased from 0.04 for the shortest chain molecule (B2) to 0.20 for the largest chain molecule (B13). The higher quantum yield of B13 compared with B2 correlates well with an increase in the fluorescence lifetime. The monomer emission lifetime was 4.8 ns whereas a lifetime as high as 21.2 ns was measured for the B13 aggregate fluorescence. A shorter sub-nanosecond lifetime was also measured for suspended colloids in B5, B9, and B13. The enhanced quantum yield is attributed to an increase of disorder in the B13 aggregates. As the polarity of the solution increases, the hydrophobic effect further enhances the disorder, and, therefore, the quantum yields in these particles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app