Add like
Add dislike
Add to saved papers

Decreased expression of WNT2 in villi of unexplained recurrent spontaneous abortion patients may cause trophoblast cell dysfunction via downregulated Wnt/β-catenin signaling pathway.

WNT2 has been reported to be important for placental development, especially for the proper vascularization of the placenta. However, its precise role in first-trimester trophoblast cells is still unknown. WNT2 expression in the villous tissues of unexplained recurrent spontaneous abortion (URSA) patients was compared with that of healthy women by Western blot. The function of WNT2 in HTR-8/SVneo trophoblast cells was evaluated by altering the cellular WNT2 level through overexpression and shRNA knockdown. The molecular mechanism of the effect of WNT2 on trophoblast cells was investigated. The association of WNT2 with the Wnt/β-catenin signaling pathway was studied through Western blot and immunofluorescence. Results showed that WNT2 protein expression was significantly decreased in villi of the URSA group compared with the control group. In vitro studies showed that WNT2 could promote human trophoblast cell proliferation and migration through activating the Wnt/β-catenin signaling pathway. Moreover, upon the knockdown of WNT2, trophoblast cell proliferation and migration were significantly suppressed. In conclusion, our study indicated that WNT2 plays an important role in trophoblast function. WNT2 insufficiency might cause impaired trophoblast cell proliferation and migration via downregulation of Wnt/β-catenin signaling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app