Add like
Add dislike
Add to saved papers

Spatially Resolved Large Magnetization in Ultrathin BiFeO 3 .

Advanced Materials 2017 August
Here, a quantitative magnetic depth profile across the planar interfaces in BiFeO3 /La0.7 Sr0.3 MnO3 (BFO/LSMO) superlattices using polarized neutron reflectometry is obtained. An enhanced magnetization of 1.83 ± 0.16 μB /Fe in BFO layers is observed when they are interleaved between two manganite layers. The enhanced magnetic order in BFO persists up to 200 K. The depth dependence of magnetic moments in BFO/LSMO superlattices as a function of the BFO layer thickness is also explored. The results show the enhanced net magnetic moment in BFO from the LSMO/BFO interface extends 3-4 unit cells into BFO. The interior part of a thicker BFO layer has a much smaller magnetization, suggesting it still keeps the small canted AFM state. The results exclude charge transfer, intermixing, epitaxial strain, and octahedral rotations/tilts as dominating mechanisms for the large net magnetization in BFO. An explanation-one suggested by others previously and consistent with the observations-attributes the temperature dependence of the net magnetization of BFO to strong orbital hybridization between Fe and Mn across the interfaces. Such orbital reconstruction would establish an upper temperature limit for magnetic ordering of BFO.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app