Add like
Add dislike
Add to saved papers

Fabrication of Millimeter-Long Carbon Tubular Nanostructures Using the Self-Rolling Process Inherent in Elastic Protein Layers.

Advanced Materials 2017 August
Millimeter-long conducting fibers can be fabricated from carbon nanomaterials via a simple method involving the release of a prestrained protein layer. This study shows how a self-rolling process initiated by polymerization of a micropatterned layer of fibronectin (FN) results in the production of carbon nanomaterial-based microtubular fibers. The process begins with deposition of carbon nanotube (CNT) or graphene oxide (GO) particles on the FN layer. Before polymerization, particles are discrete and nonconducting, but after polymerization the carbon materials become entangled to form an interconnected conducting network clad by FN. Selective removal of FN using high-temperature combustion yields freestanding CNT or reduced GO microtubular fibers. The properties of these fibers are characterized using atomic force microscopy and Raman spectroscopy. The data suggest that this method may provide a ready route to rapid design and fabrication of aligned biohybrid nanomaterials potentially useful for future electronic applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app