Add like
Add dislike
Add to saved papers

Discovery of a Calcium-Dependent Enzymatic Cascade for the Selective Assembly of Hapalindole-Type Alkaloids: On the Biosynthetic Origin of Hapalindole U.

Angewandte Chemie 2017 June 20
Hapalindole U (4) is a validated biosynthetic precursor to ambiguine alkaloids (Angew. Chem. Int. Ed. 2016, 55, 5780), of which biogenetic origin remains unknown. The recent discovery of AmbU4 (or FamC1) protein encoded in the ambiguine biosynthetic pathway (J. Am. Chem. Soc. 2015, 137, 15366), an isomerocyclase that can rearrange and cyclize geranylated indolenine (2) to a previously unknown 12-epi-hapalindole U (3), raised the question whether 3 is a direct precursor to 4 or an artifact arising from the limited in vitro experiments. Here we report a systematic approach that led to the discovery of an unprecedented calcium-dependent AmbU1-AmbU4 enzymatic complex for the selective formation of 4. This discovery refuted the intermediacy of 3 and bridged the missing links in the early-stage biosynthesis of ambiguines. This work further established the isomerocyclases involved in the biogenesis of hapalindole-type alkaloids as a new family of calcium-dependent enzymes, where the metal ions are shown critical for their enzymatic activities and selectivities.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app