Add like
Add dislike
Add to saved papers

Profiling of Vitis vinifera L. canes (poly)phenolic compounds using comprehensive two-dimensional liquid chromatography.

Grapevine canes, a pruning-derived by-product, possess a great amount of bioactive (poly)phenolic compounds belonging to different chemical classes, thus, having a good potential for further valorization. However, in order to properly design valorization strategies, the precise chemical composition of this material has to be known. Up to now, this chemical characterization has been based on analysis of different groups of components individually, due to difficulties related to their huge chemical variability. In this work, a comprehensive two-dimensional liquid chromatography-based method (LC×LC) is developed to obtain the profiles of (poly)phenolic compounds present in grapevine canes from several varieties. Three different set-ups have been tested and compared; the combination of diol and C18 columns produced the best results, allowing the characterization of the (poly)phenolic profile in around 80min. This way, 81 different components were detected in the samples; most of them could be tentatively assigned using the information provided by the DAD and MS detectors employed. Indeed, it has been possible to detect in a single run components belonging to stilbenoids, procyanidins and prodelphinidins of varying degrees of polymerization, some of them not formerly described in this natural source. The method has shown extremely good separation capabilities, and is characterized by high effective peak capacity (842) and orthogonality (A0 =78%). The obtained results demonstrate that Vitis vinifera L. canes may retain a great potential to be used as an underexploited natural source of bioactive compounds, with potential applications in different fields.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app