Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Relation between Vibrational Dephasing Time and Energy Gap Fluctuations.

Dephasing processes are present in basically all applications in which quantum mechanics plays a role. These applications certainly include excitation energy and charge transfer in biological systems. In a previous study, we have analyzed the vibrational dephasing time as a function of energy gap fluctuation for a large set of molecular simulations. In that investigation, individual molecular subunits were the focus of the calculations. The set of studied molecules included bacteriochlorophylls in Fenna-Matthews-Olson and light-harvesting system 2 complexes as well as bilins in PE545 aggregates. The present work extends this study to entire complexes, including the respective intermolecular couplings. Again, it can be concluded that a universal and inverse proportionality exists between dephasing time and variance of the excitonic energy gap fluctuations, whereas the respective proportionality constants can be rationalized using the energy gap autocorrelation functions. Furthermore, these findings can be extended to the gaps between higher-lying neighboring excitonic states.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app