Add like
Add dislike
Add to saved papers

Efficient Conversion of Fructose-Based Biomass into Lipids with Trichosporon fermentans Under Phosphate-Limited Conditions.

Limiting nitrogen supply has been routinely used as the master regulator to direct lipid biosynthesis. However, this strategy does not work with nitrogen-rich substrates, such as Jerusalem artichoke (JA), a fructose-based biomass, while it is difficult to obtain a high carbon-to-nitrogen (C/N) molar ratio. In this study, an alternative strategy to promote lipid accumulation by the oleaginous yeast Trichosporon fermentans CICC 1368 was developed by limiting phosphorous supply, and this strategy was implemented with JA hydrolysate as substrate. We showed that lipid accumulation was directly correlated with the C/P ratio of the culture media for T. fermentans. The time course of cell growth and lipid production was analyzed in a media with an initial C/P ratio of 6342, and the cellular lipid content could reach up to 48.5% of dry biomass. Moreover, JA hydrolysates were used as substrate for microbial lipid accumulation, under high C/P molar ratio condition, lipid yield, lipid content, and lipid coefficient increased by 10, 30, and 34%, respectively. It showed that by limiting phosphorus, the conversion of sugar into lipids can be improved effectively. Limiting phosphorus provides a promising solution to the problem of microbial lipid production with nitrogen-rich natural materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app