Add like
Add dislike
Add to saved papers

Exploring the Bioelectrochemical Characteristics of Activated Sludge Using Cyclic Voltammetry.

Due to the potential interest, bioelectrochemical responses of activated sludge using the three-electrode system are tested. From the cyclic voltammograms, the oxidation current output is increasing due to incubation time increase, whereas 5, 25 and 39.33 μA are obtained after 3, 72 and 96 h, respectively. Changing the working electrode from glassy carbon to carbon paste led to the increase in the electrochemical signal from 0.3 to be 3.72 μA. On the other hand, the use of the lipophilic redox mediator (2,6-dichlorophenolindophenol (DCIP)) amplified the oxidation current to reach 19.9 μA instead of 2.1 μA. Based on these findings, the mixed microbial community of the activated sludge is exploited as a catalyst for the bio-oxidation of the degradable organic substrates, while DCIP is used as a mobile electron carrier from the intracellular matrix of the metabolically active cells to the carbon paste electrode which served as the final electron acceptor. Therefore, the extracellular electron transfer from the formed active biofilm at the electrode surface is assisted by the existence of DCIP.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app