Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Assessing the role of serotonergic receptors in cannabidiol's anticonvulsant efficacy.

Cannabidiol (CBD) is a phytocannabinoid that has demonstrated anticonvulsant efficacy in several animal models of seizure. The current experiment validated CBD's anticonvulsant effect using the acute pentylenetetrazol (PTZ) model. Furthermore, it tested whether CBD reduces seizure activity by interacting with either the serotonergic 5HT1A or 5HT2A receptor. 120 male adolescent Wistar-Kyoto rats were randomly assigned to 8 treatment groups in two consecutive experiments. In both experiments, subjects received either CBD (100mg/kg) or vehicle 60min prior to seizure testing. In Experiment 1, subjects received either WAY-100635 (1mg/kg), a 5HT1A antagonist, or saline vehicle injection 80min prior to seizure testing. In Experiment 2, subjects received either MDL-100907 (0.3mg/kg), a specific 5HT2A antagonist, or 40% DMSO vehicle 80min prior to seizure testing. 85mg/kg of PTZ was administered to induce seizure, and behavior was recorded for 30min. Seizure behaviors were subsequently coded using a 5-point scale of severity. Across both experiments, subjects in the vehicle control groups exhibited high levels of seizure activity and mortality. In both experiments, CBD treatment significantly attenuated seizure activity. Pre-treatment with either WAY-100635 or MDL-100907 did not block CBD's anticonvulsant effect. WAY-100635 administration, by itself, also led to a significant attenuation of seizure activity. These results do not support the hypothesis that CBD attenuates seizure activity through activation of the 5HT1A or 5HT2A receptor. While this work further confirms the anticonvulsant efficacy of CBD and supports its application in the treatment of human seizure disorders, additional research on CBD's mechanism of action must be conducted.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app