JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Efficient heterologous expression, functional characterization and molecular modeling of annular seabream digestive phospholipase A 2 .

Here we report the cDNA cloning of a phospholipase A2 (PLA2 ) from five Sparidae species. The deduced amino acid sequences show high similarity with pancreatic PLA2 . In addition, a phylogenetic tree derived from alignment of various available sequences revealed that Sparidae PLA2 are closer to avian PLA2 group IB than to mammals' ones. In order to understand the structure-function relationships of these enzymes, we report here the recombinant expression in E.coli, the refolding and characterization of His-tagged annular seabream PLA2 (AsPLA2 ). A single Ni-affinity chromatography step was used to obtain a highly purified recombinant AsPLA2 with a molecular mass of 15kDa as attested by gel electrophoresis and MALDI-TOF mass spectrometry data. The enzyme has a specific activity of 400U.mg-1 measured on phosphatidylcholine at pH 8.5 and 50°C. The enzyme high thermo-activity and thermo-stability make it a potential candidate in various biological applications. The 3D structure models of these enzymes were compared with structures of phylogenetically related pancreatic PLA2 . By following these models and utilizing molecular dynamics simulations, the resistance of the AsPLA2 at high temperatures was explained. Using the monomolecular film technique, AsPLA2 was found to be active on various phospholipids spread at the air/water interface at a surface pressure between 12 and 25dyncm-1 . Interestingly, this enzyme was shown to be mostly active on dilauroyl-phosphatidylglycerol monolayers and this behavior was confirmed by molecular docking and dynamics simulations analysis. The discovery of a thermo-active new member of Sparidae PLA2 , provides new insights on structure-activity relationships of fish PLA2 .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app