Add like
Add dislike
Add to saved papers

Moderate exercise training decreases inflammation in transgenic sickle cell mice.

Chronic systemic inflammation is a pathophysiological feature of sickle cell disease (SCD). Considering that regular exercise exerts multiple beneficial health effects including anti-inflammatory actions, we investigated whether a treadmill training program could minimize the inflammatory state in transgenic sickle cell (SS) mice. To test this hypothesis, SS mice were subjected to a treadmill training protocol of 1h/day, 5days a week for 8weeks. Exercise training increased the percent of venous oxyhemoglobin and sharply decreased the percent of carboxyhemoglobin suggesting that exercise training may limit the proportion of erythrocytes that were deoxygenated in the venous circulation. Exercise training attenuated systemic inflammation as attested by a significant drop in white blood cell (WBC) count and plasma Th1/Th2 cytokine ratio. There was reduction in interleukin-1β and endothelin-1 mRNA expression in trained sickle mice. The spleen/body mass ratio was significantly decreased in trained sickle mice and there was a strong correlation between the magnitude of congestion and the relative spleen mass in all animals (trained and untrained). We conclude that moderate intensity exercise training, without any noticeable complications, may be associated with limited baseline blood deoxygenation and inflammation in sickle cell mice, and reduce sequestration of sickle erythrocytes/congestion in the spleen.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app