Add like
Add dislike
Add to saved papers

Transition temperature of poly(methyl methacrylate) determined by time-of-flight secondary ion mass spectrometry and contact angle measurements.

The surface chain conformations of poly(methyl methacrylate) (PMMA) at different temperatures were extensively studied by time-of-flight secondary ion mass spectrometry (ToF-SIMS). Similar to our previous experimental studies on polystyrene (PS) and poly(2, 3, 4, 5, 6-pentafluorostyrene) (5FPS), a transition temperature (TT ) could be identified through the principal component analysis (PCA) of the ToF-SIMS spectra obtained from the PMMA samples annealed at different temperatures. Interestingly, our results show that the TT depended on molecular weight and was about 50-60˚C below the bulk glass transition temperature (Tg ) and therefore could possibly be related to the surface glass transition temperature (Tg S ). These results were confirmed by contact angle measurements. ToF-SIMS results showed higher peak intensities of several low-mass oxygen-containing positive ions, hydrocarbon positive ions and OCH3 - negative ion at higher temperatures, which can be interpreted by a higher surface concentration of methoxy groups at the surface.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app