Add like
Add dislike
Add to saved papers

Monitoring of nanoclay-protein adsorption isotherms via fluorescence techniques.

The investigation of nanoparticles and their interaction with bio-macromolecules have become an important issue; the widely discussed protein corona around nanoparticles and their biological fate in general have drawn particular attention. Here, we focus on nanoclay dispersions and the use of solvatochromic fluorescent dyes (Dansyl and Coumarin 153) for monitoring the interaction with two model proteins, bovine serum albumin and β-lactoglobulin. On one hand, these dyes are poorly emissive in water, but experience a boost in their fluorescence when adsorbed into the hydrophobic domains of proteins. On the other hand, (nano)clays and clay minerals have previously been investigated in terms of their individual protein adsorption isotherms and their usefulness for the solubilization of water-insoluble dyes into an aqueous environment. In the following, we have combined all three individual parts (nanoclay, fluorophore and protein) in dispersions in a wide range of concentration ratios to systematically study the various adsorption processes via fluorescence techniques. In order to clarify the extent of dye diffusion and adsorption-desorption equilibria in the investigations, nanoclay hybrids with an adsorbed dye (Coumarin 153) and a covalently conjugated dye (Dansyl) were compared. The results suggest that the fluorescence progression of protein titration curves correlate with the amount of protein adsorbed, matching their reported adsorption isotherms on hectorite clays. Furthermore, experimental data on the protein monolayer formation around the nanoclays could be extracted due to only minor alterations of the dispersions' optical quality and transparency. In this manner, a fluorescence-based monitor for the formation of the globular protein layer around the nanoclay was realized.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app