Add like
Add dislike
Add to saved papers

Variation in cucumber (Cucumis sativus L.) fruit size and shape results from multiple components acting pre-anthesis and post-pollination.

Planta 2017 October
MAIN CONCLUSION: Morphological, QTL, and gene expression analyses indicate variation in cucumber fruit size and shape results from orientation, timing, and extent of cell division and expansion, and suggest candidate gene factors. Variation in cucumber (Cucumis sativus L.) fruit size and shape is highly quantitative, implicating interplay of multiple components. Recent studies have identified numerous fruit size and shape quantitative trait loci (QTL); however, underlying factors remain to be determined. We examined ovary and fruit development of two sequenced cucumber genotypes with extreme differences in fruit size and shape, Chinese Long '9930' (CL9930), and pickling type 'Gy14'. Differences were observed in several independent factors that can influence size and shape: ovule number, rate and period of cell division in longitudinal and cross section in ovaries and fruit, timing and rate of fruit expansion in length and diameter, and cell shape. Level and timing of expression of select fruit growth stage marker genes and candidate fruit size gene homologs associated with cucumber fruit size and shape QTL were examined from 5-day pre-anthesis to 20-day post-pollination. Our results indicate that variation in fruit size and shape results from differences in cell number and shape in longitudinal and cross section, driven in turn by differences in orientation, timing, and duration of cell division and expansion, both pre- and post-anthesis, and suggest candidate genes contributing to determination of cucumber fruit size and shape.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app